TOP
山东农业大学生命科学学院欢迎您!
学校首页 院长邮箱 English 怀念旧版
您当前的位置: 首页  师资队伍  教师信息  生物技术系
李传友
发布时间:2023-07-11 作者: 浏览次数:15

李传友教授

学历:博士

职称:教授

联系电话:0538-8247893;邮件:chuanyouli@sdau.edu.cn

所属部门:生物技术系

招生专业:遗传学、细胞生物学(博士、硕士)


个人简介

李传友,博士、教授,博士生导师。1999年获中国科学院遗传研究所博士学位。1999-2003年在Michigan State University DOE-Plant Research Laboratory从事博士后研究。2003年入选中国科学院“百人计划”,2004年获 “国家杰出青年科学基金”资助。2015年入选泰山学者优势特色学科团队领军人才。2016年入选中组部“万人计划”科技创新领军人才。担任国家重大科学研究计划项目首席科学家,主要学术兼职包括Molecular Plant》、《Horticulture Research》、《Plant Molecular Biology》等国际著名刊物编委。作为执行委员会委员和中方联络人组织实施了国际茄科基因组计划,完成了栽培番茄与其起源种醋栗番茄基因组的精细序列分析。组织召开了第286次香山科学会议“植物激素与绿色革命”和第479次香山科学会议“植物发育与生殖:前沿科学问题与发展战略”。作为学术秘书申请并组织实施了国家自然科学基金委首个重大研究计划项目“植物激素作用的分子机理”(2008

2016年)并在结题验收中获得优秀。

李传友团队长期研究植物系统性防御与可塑性发育的机理与调控。以番茄为模式研究植物利用激素信号控制抗性与其它重要农艺性状形成的分子基础和调控网络,致力于用分子设计手段培育绿色安全、营养健康、美味可口的番茄新品种。Nature, Nature Plants, PNAS, Molecular Plant, Plant Cell等国际主流学术刊物发表论文120余篇,引用11000余次。在国际权威出版社ELSEVIER出版英文专著«Hormone Metabolism and Signaling in Plants»H-index56。入选Clarivate Analytics(科睿唯安)全球前1%高被引学者名单。申请PCT 专利1项,获得授权专利20项、植物新品种权2项,育成农业农村部登记番茄品种2个。


研究方向

1. 茉莉酸作用机理

茉莉酸既调控植物免疫,又在植物可塑性发育中发挥重要作用。茉莉酸信号通路的实质是核心转录因子MYC2介导的转录重编程。一方面,我们研究中介体亚基MED25MYC2形成的功能复合体MMC (MYC2-MED25 Functional Transcription Complex)在茉莉酸信号的激活、级联放大、终止以及精细调控中的作用机制;另一方面,我们研究免疫激素茉莉酸与生长激素互作通过改变干细胞活性调控植物可塑性发育和器官再生的机理。


2. 系统素/茉莉酸介导的植物系统防御机理

  对应于机械损伤和病虫侵害,植物不仅在受伤部位启动局部防御反应,而且在未受伤部位激活系统防御反应。我们以番茄为模式系统,用正向遗传学手段解析植物系统防御反应的信号转导机理。在番茄中,植物界发现的第一个小肽激素系统素与经典植物激素茉莉酸通过共同的信号通路调控植物的系统防御反应。过量表达系统素前体基因(PROSYSTEMIN)的转基因番茄组成型地激活了植物的局部和系统防御反应。据此我们进行了大规模的遗传筛选获得了一系列系统素信号通路的抑制子(suppressor of prosystemin-mediated responses,spr)和增强子(enhancer of prosystemin-mediated responses,epr),通过对这些突变体的研究分离关键组分,在此基础上系统解析植物受伤反应的信号网络。


3. 番茄重要农艺性状形成机理解析与种质创新

开展番茄功能基因组学研究,与国际同行一道完成了栽培番茄及其起源种醋栗番茄基因组的精细序列分析。聚焦番茄对重大病害(土传病害颈腐根腐病、青枯病,死体营养型病害灰霉病、灰叶斑病,褐色皱果病毒病等)的抗性和品质(风味品质、营养品质和健康品质)等重要农艺性状,从丰富的种质资源入手,鉴定控制番茄抗病性和优质的关键基因,阐明番茄抗病性和品质性状形成的分子机理。鉴定关键抗性基因和优质基因的优异单倍型,解析其驯化和演化规律,创制对番茄抗性和果实品质提升有显著效应的新种质。


4. 健康美味番茄生物育种

针对目前对抗性与品质互作机制认识不足的现状,聚焦影响番茄品质的重要病害,建立抗性与品质互作的研究模型,解析番茄抗性与品质基因互作的遗传与代谢基础,发掘同时控制抗性和品质性状形成的节点基因,创制对综合性状提升有显著效应的番茄新种质。在此基础上,采取基因组设计和生物育种新手段,培育营养健康、绿色高效的美味番茄新品种。



发表文章(*通讯作者)

  1. Deng, L.*, Yang, T., Li, Q., Chang, Z., Sun, C., Jiang, H., Meng, X., Huang, T., Li, C-B., Zhong, S., and Li, C.* (2023). Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. Plant Cell35: 1038–1057. (Highlighted with a In Brief article in Plant Cell, https://doi.org/10.1093/plcell/koad015)

  2. Yang, T., Ali, M., Lin, L., Li, P., He, H., Zhu, Q., Sun, C., Wu, N., Zhang, X., Huang, T., Li, C-B., Li, C.*, and Deng, L.* (2023). Recoloring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing. Hortic. Res. 10: uhac214. (Cover story)

  3. An, C., Deng, L., Zhai, H., You, Y., Wu, F., Zhai, Q., Goossens, A., and Li, C.* (2022). Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Mol Plant (DOI: 10.1016/j.molp.2022.06.014)

  4. Du, M., Daher, F., Liu, Y., Steward, A., Tillmann, M., Zhang, X., Wong, J., Ren, H., Cohen, J., Li, C.*, and Gray, W. * (2022). Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Sci Adv 8: eabj1570.

  5. Zhai, Q., Deng, L., and Li, C.* (2020). Mediator subunit MED25: at the nexus of jasmonate signaling. Curr Opin Plant Biol 57: 78–86.

  6. Zhai, H., Zhang, X., You, Y., Lin, L., Zhou, W.*, and Li, C.* (2020). SEUSS integrates transcriptional and epigenetic control of root stem cell organizer specification. EMBO J 39: e105047.

  7. Wu, F., Deng, L., Zhai, Q., Zhao, J., Chen, Q., and Li, C.* (2020). Mediator subunit MED25 couples alternative splicing of JAZ genes with fine-tuning of jasmonate signaling. Plant Cell 32: 429–448.

  8. Sun, C., Deng, L., Du, M., Zhao, J., Chen, Q., Huang, T., Jiang, H., Li, C-B.*, and Li, C.*(2020). A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Mol Plant 13: 42–58. (Cover story). Highlighted with a Spotlights article in Molecular Plant, https://doi.org/10.1016/j.molp.2019.12.012

  9. Wang, H., Li, S., Li, Y., Xu, Y., Wang, Y., Zhang, R., Sun, W., Chen, Q., Wang, X., Li, C.*, and Zhao, J.*(2019). MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signaling. Nat Plants5: 616625.(Recommended in F1000 Prime)

  10. Liu, Y., Du, M., Deng, L., Shen, J., Fang, M., Chen, Q., Lu, Y., Wang, Q.*, Li, C.*, and Zhai Q.* (2019). MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31: 106–127. Highlighted with an In Brief article in Plant Cell, https://doi.org/10.1105/tpc.19.00004;Highlighted with a Spotlight article in Trends Plant Sci., https://doi.org/10.1016/j.tplants.2019.06.001.

  11. You Y, Zhai Q*, An C, and Li C.*(2019).LEUNIG_HOMOLOG mediates jasmonate-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. Plant Cell 31: 21872205.

  12. Zhou, W., Lozano-Torres, J.L., Blilou, I., Zhang, X., Zhai, Q., Smant, G., Li, C., and Scheres, B.*(2019). A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177: 942–956.

  13. Zhang, X.Zhou, W., Chen, Q., Fang, M., Zheng, S., Ben, S., and Li, C.*(2018). The Mediator subunit MED31 is required for radial patterning of Arabidopsis roots.Proc Natl Acad Sci USA 115: E5624E5633.

  14. An, C., Li, L., Zhai, Q.*, You, Y., Deng, L., Wu, F., Chen, R., Jiang, H., Wang, H., Chen, Q., and Li, C.*(2017). Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc Natl Acad Sci USA 114: E8930E8939.

  15. Du, M.,Zhao, J.*, Tzeng, D.,Liu, Y., Deng, L., Yang, T., Zhai, Q., Wu, F., Huang, Z., Zhou, M., Wang, Q., Chen, Q., Zhong, S., Li, C-B.*, and Li, C.*(2017).MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29: 1883–1906.

  16. Li J, Li C, and Smith S.M.(Eds.). (2017). Hormone Metabolism and Signaling in Plants. Woodhead Publishing, Elsevier. (Book)

  17. Li, C.*, Li, J.*, Harter, K., Lee, Y., Leung, J.,Martinoia, E., Matsuoka, M., Offringa, R., Qu, L., Schroeder, J., andZhao, Y. (2016). Toward a molecular understanding of plant hormone actions. Mol Plant9: 1–3.

  18. Xu, Y., Jin, W., Li, N., Zhang, W., Liu, C., Li, C.*, and Li, Y.*(2016). UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis. Plant Cell 28: 1200–1214.

  19. Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., Zhang, M., Wang, Q.*,and Li, C.*(2015). Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27: 28142828.(Recommended in F1000 Prime)

  20. Du, M., Zhai, Q., Deng, L., Li, S., Li, H., Yan, L., Huang, Z., Wang, B., Jiang, H., Huang, T., Li, C-B., Wei, J., Kang, L., Li, J., and Li, C.* (2014). Closely-related NAC transcription factors of tomato differentially regulate stomatal closure and re-opening during pathogen attack. Plant Cell26: 31673184.

  21. Sun, J., Qi, L., Li, Y., Zhai, Q., and Li, C.* (2013). PIF4 and PIF5 link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25: 21022114.

  22. Li, S., Zhao, B., Yuan, D., Duan, M., Qian, Q., Tang, L., Wang, B., Liu, X., Zhang, J., Wang, J., Sun, J., Liu, Z., Feng, Y., Yuan, L.*, and Li, C.*. (2013). The rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci USA 110: 31673172.

  23. Yan, L., Zhai, Q., Wei, J., Li, S., Wang, B., Huang, T., Du, M., Sun, J., Kang, L., Li, C-B.*, and Li, C.* (2013). Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 9: e1003964.

  24. Zhai, Q., Yan, L., Tan, D., Chen, R., Sun, J., Gao, L., Dong, M-Q., Wang, Y., and Li, C.*(2013). Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet 9: e1003422.

  25. Chen, R., Jiang, H., Li, L., Zhai, Q., Qi, L., Zhou, W., Liu, X., Li, H., Zheng, W., Sun, J., and Li, C.*(2012). The Arabidopsis Mediator subunit MED25 differentially regulates jasmonate and ABA signalings through interacting with MYC2 and ABI5. Plant Cell 24:28982916.

  26. The Tomato Genome Consortium.(2012). The tomato genome sequence provides insights into fleshy fruit evolution. NatureVolume: 485: Pages: 635641. (Cover story)

  27. Sun, J., Qi, L., Li, Y., Chu, J., and Li, C.* (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet8:e1002594. (Recommended in F1000 Prime)

  28. Chen, Q., Sun, J., Zhai, Q., Zhou, W., Qi, L., Xu, L., Wang, B., Chen, R., Jiang, H., Qi, J., Li, X., Palme, K., and Li, C.* (2011). The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell23:33353352. (Recommended in F1000 Prime)

  29. Sun, J., Jiang, H., and Li, C.*(2011). Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol Plant 4: 607615.

  30. Zhou, W., Wei, L., Xu, J., Zhai, Q., Jiang, H., Chen, R., Chen, Q., Sun, J., Chu, J., Zhu, L., Liu, C-M., andLi, C.*(2010). Arabidopsis tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating post-embryonic maintenance of root stem cell niche. Plant Cell22: 36923709.

  31. Liu, F., Jiang, H., Ye, S., Chen, W-P., Liang, W., Xu, Y., Sun, B., Sun, J., Wang, Q., Cohen, J.D., andLi, C.* (2010). The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res20: 539552.

  32. Sun, J., Xu, Y., Ye, S., Jiang, H., Chen, Q., Liu, F., Zhou, W., Chen, R., Li, X., Tietz, O., Wu, X., Cohen, J., Palme, K., andLi, C.* (2009). ArabidopsisASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation.Plant Cell21: 14951511.

  33. Liang, W., Li, C-B., Liu, F., Jiang, H., Li, S., Sun, J., Wu, X., and Li, C.*. (2009). The Arabidopsis homologs of CCR4-associated factor 1 exhibit mRNA deadenylation activity and play a role in plant defense responses. Cell Res.19: 307316.

  34. Bu, Q., Jiang, H., Li, C-B., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., andLi, C.*(2008). Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res18: 756767.

  35. Li, C., Schilmiller, A.L., Liu, G., Lee, G.I., Jayanty, S., Sageman, C., Vrebalov, J., Giovannoni, J.J., Yagi, K., Kobayashi, Y., and Howe, G.A.*(2005). Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell17: 971986.

  36. Li, C., Liu, G., Xu, C., Lee, G., Bauer, P., Ganal, M., Ling, H., and Howe, G.A.*(2003). The tomato Suppressor of prosystemin-mediatedresponse2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell15: 16461661.

  37. Li, L.#, Li, C.#, Lee, G.I., and Howe, G.A.*(2002). Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99: 64166421. (#These authors contributed equally to this work)





版权所有@山东农业大学生命科学学院
鲁ICP备05002369号